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ABSTRACT -R

-In this paper'-ve presentthe parallel implementations of two iterative gra-

dient based algorithms to solve the unconstrained linear quadratic regulator

optimal control problem. .2Vt showthat parallel evaluation of the step lengtht.

and gradient of the quadratic cost function can be efficiently performed as a func-

tion of the number of processors. We then embed our parallel step length and

gradient procedures to produce parallel implementations of the gradient and con-

jugate gradient methods that may be executed on an SIMD machine.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced []
Justification

By
Distribution/

Availability Codes

Avail and/or
Dist Special

ze,,% - %"

• .%* '.

:'-S

*.*, '"4

.: ...

.*%-S_:



-3-

I. INTRODUCTION

Previous parallel approaches to the solution of optimal control problems

[LAR73J, [MEY73], [SCH81], [TRA80] have been devised without explicitly taking

into consideration the computational environment. In particular, when the

number of available processors is small in relation to the problem size, the above

techniques simply fold the computations to fit the number of processors. More

efficient parallel algorithms may be devised by considering the computational

environment throughout the algorithm synthesis. Toward that end, we present

in this paper a parallel procedure for gradient evaluation which is formulated as a

function of the number of available processors. Although presented in the con-

text of unconstrained optimal control, our results for gradient computation are

also applicable to constrained problems. Furthermore, we show that the step size

obtained as a result of the line search performed at each iteration may also be

efficiently computed in parallel. We then combine the techniques for parallel gra-

dient evaluation and step size determination to produce parallel implementations

of the best-step steepest descent method and the Fletcher-Reeves conjugate gra-

dient method to solve the linear quadratic regulator (LQR) control problem

[LEW86].

It is well known that a closed loop feedback form solution exists for the LQR

problem. Our motivation for solving that problem using iterative gradient based

techniques is that our basic parallel approach can be applied to more complex

control problems in which the system dynamics can be linearized and the cost

approximated quadratically. Furthermore, efficient parallel implementations of

gradient methods such as best-step steepest descent and conjugate gradient sug-

gests that similar parallel implementations of penalty function and gradient pro-

jection methods may be used to solve constrained control problems.

t' .'.",. .". .'. '.". .."- ..".'.".'. .- ' '. ,..- ..., , ---,- ', ',-.- .- ..-.- ., , ., . .,i?



M -Ih - _ N2* --i .N'P PW -j- vv.v d w- L,%n~V r~ X.7

-4-

Our approach to the parallel evaluation of the step and gradient reduces the

total number of operations required by sharing common terms when possible and

then introduces parallelism. The degree of parallelism exhibited by the step and

gradient computation techniques presented in this paper varies as a function of

the number of processors to be used. We constrain the number of available pro-

cessors, p , to lie in the range 1 < p _ nN', where n is the size of the system

state vector, N is the number of stages in the control process and we assume

n _ m, where m is the size of the control. One of the features of the proposed

parallel iterative algorithms is that their structure is completely specified by the

number of processors whenever the number of stages N

An efficient technique for gradient evaluation using a single processor has

been discussed by Polak [POL71, pp.68-69]. A direct implementation of this

technique on p processors achieves linear speedup for p up to n ; however, for

p > n, the speedup is significantly reduced. In this paper, we present an

approach to gradient computation that may be efficiently implemented on up to

nN" processors and reduces to a direct parallel implementation of the gradient

evaluation given in [POL71] when 1 < p < n. However, for n < p < nN ,

1%we show that our approach achieves speedup greater than -(p + n
2

A critical step in our approach involves the parallel computation of the state

and costate vectors. When n = 1, the computations reduce to solving a forward

linear recurrence system followed by a reverse linear recurrence system, both of

size N. The parallel evaluation of m-th order linear recurrence systems has been

extensively studied [KOG73], [CHE75], [KUC76], [SAM75], [SAM77], [CHE78],

[GAJ81], [CAR84], [MEY85] and [MEY86]. To solve first-order linear block

w ,
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recurrence systems in parallel, we use a blocked formulation of the approach

presented in [MEY86], [MEY86]. In addition to requiring less steps to solve a

first-order system than any of the above when 1 < p _ Nk, the approach in

[MEY86] can be implemented on a simple ring network with broadcasting capa-

bility.

The organization of this paper is as follows : in Section II, we state the

unconstrained discrete linear quadratic optimal control problem, examine the gra-

dient of the cost function and give the steepest descent algorithm we shall con-

sider. Section III presents the step length and gradient computations required at

each iteration. In Section IV we give parallel procedures to solve the linear

recurrence systems required by Section III. Based upon the results of Sections III

and IV, Section V presents parallel implementations of the best-step steepest des-

cent method to solve the LQR problem and the corresponding performance

analysis. Finally, in Section VI conclusions are presented.

II. PRELIMINARIES

We consider the LQR discrete optimal control problem:

Problem 1. Given an m -input, discrete, time-varying linear system in which we

are given the initial state, z 0 , and

zi =A zi_-1 + B i ui, i = 1,2,...N, (1)

where for i = 0,1,...,N, zi in E n is the state of the system at time i and for I

= 1,2,...,N, ui in E ' is the control at time i, find the mN control vector

u =(u ,us,.., u/v)t that minimizes the performance index

J(u) (z' Qz + tuRu ) I
where z is the nN vector z (z ,z Q..... Diag(Q 1 ,Q 2 ... I

Ui
* . - - . 4 4 . . . .- ( .

J ' ~ * ? 4 ~ .. ~ .. ~. % ., *.
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QN) is the nN X nN block matrix that consists of N n X n symmetric positive

semi-definite blocks Q, and R = Diag (R 1, R 2,.... RN) is the mN X mN block

matrix that consists of N m X m symmetric positive definite blocks R3 .

The hypotheses on the matrices Q and R insure that Problem 1 possesses a

unique solution u* [LUE84] and that ( V = =-0

dJ
We now introduce a formulation for - that is used in our parallel imple-

u

mentation of gradient algorithms.

A direct application of the chain rule for differentiation [GRA81] yields

dJ _ J a J dzWU -- ;a + j7 du' (2)

where the zi 's are determined in accordance with Eq. (1), 21 and 21 are the
5 z

1 XmN and 1 X nN Jacobian matrices u t R and z t Q respectively, and d is

the nN X mN block lower triangular Jacobian matrix that consists of N 2 n X m

blocks - = du- obtained by the chain rule for all i and j in [1,2,...,N]

by

0 if i < jdz, B if i = (3)

Ai A- 1 ... Aj +jBj if i > I.

Eq. (3) shows that the influence matrix A5Z satisfies Fz dz Fu, where F

is the nN X nN block lower bidiagonal matrix that consists of N2 n X n blocks

(F defined for all i and j in [1,2,...,N by
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I if i =j
F,) -A ifi = j+1

0 otherwise

and F. is the nN XmN block diagonal matrix that consists of N 2 n Xm blocks

(F, ) defined for all i and j in [1,2,...,N] by

Bi if i = j
FU, 0 otherwise.

dJ t
Let d " be the the mN X I gradient of J (u) with respect to u. The

du1

matrix F. is non-singular and thus we may rewrite Eq. (2) as

g Ru + Ft~FzQZ,

where z again satisfies Eq. (1).

Let F0 be the nN Xn block matrix that consists of N n Xn blocks F0)

defined for all i in [1,2,...,N] by

{A if i = 1"

F°). 0 otherwise,

and let X be the nN costate vector X =(Xt, X, , t,)t )X in E defined

by

X = Fz-tQz.

Then, given u and z 0, the gradient g may be obtained by using the three equa-

tions (4),

Fz =F u + Foz0 , (4)

FA = Qz, (5)

" ' '-" '.'.'.' ' ". ."'.',',' ./, ' '- ," ," .- '- ". %.''.' "- '" " ,,'' " "- . "-" ' ,r .''"" ' "." .r -".' ". ." ." ." " . ." " . €"". '.-
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g Ru + FIX. (6)

With the notation g k = dJ the version of the best-step steepest

descent method that we use is the following:

Algorithm 1. Let u 1 be given.

Step 0: Set k = 1 and compute g

Step 1: If Ig k 12 < E stop; else go to Step 2.

Step 2: Compute ak to minimize J(u k _ akg k).

Step 3: Compute g k +1

Step 4: Let uk+1= Uk - k gk-

Step 5: Set k = k + 1 and go to Step 1.

Note that we compute g 1 in Step 0 and then compute g k +1 in Step 3,

after the computation of ak in Step 2. In Section III we present our approach to

the computation of g 1, a, and g k +1 and we show that the computation of a.

and gk +1 shares common terms. In Section IV, we discuss efficient parallel pro-

cedures for solving block linear recurrences and we use those procedures in Sec-

tion V to obtain a parallel implementation of Algorithm 1.

HI. GRADIENT AND BEST STEP COMPUTATION

We first consider the computation of g , which is performed only once in

Step 0 of Algorithm 1. As a consequence of Eqs. (4), (5) and (6) we obtain the

gradient evaluation technique proposed by Polak [POL71J:

Algorithm 2. Given u I and z 0 .

Step 1: Compute z1 such that FZ z = Fu + Fozo.

C,. ~.*-.C



Step 2: Compute X such that FX - Qz 1.

Step 3: Compute g 1....Ru 1 + F X.

Due to the lower n X n block bidiagonal structure of F, , Steps 1 and 2

of Algorithm 2 require procedures for the solution of N stage forward and reverse

n Xn block first-order linear recurrences, respectively. Such procedures are

presented in next section. Given X1, Step 3 computes g 1 by computing each of

the N uncoupled components gu ; thus, Step 3 exhibits linear

speedup when executed in parallel.

We now consider the computation of the optimal step length ak. The

cost function is quadratic and therefore a closed form solution for ak exists. It is

clear that

J(u) U t (R + FJFjtQFz F, )u
2

therefore

J(u k - ag) - a a2 + b a + c,

where

a - gk,d k >,2

b =-<g k ,g>

c =J(uk

dk -(R + F F-QF-'F )g k (7)

and it follows that the optimal step length ak is

~k --
a b <gk ,d >k

2a <g d
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Once d k is known, the gradient g k 1 is easy to evaluate using

k + gk kdk

The matrix (R + F'Fj-t QF,-IF. ) may be precomputed and the quan-

tity d k may be obtained by performing a single matrix-vector product. How-

ever, we show in Section V that a more efficient approach can be obtained by

rewriting dk as

dk = Rg k + F'FtQFj-'F, g

and using Algorithm 3 below, where we note that instead of requiring Fz-1 and

F - we solve linear systems corresponding to F, and Fzt.

Algorithm 3: Given g k'

Step 1: Compute Mk = R gk

Step 2: Compute 6 = - FU g k

Step 3: Compute w k such that Fz w k - 6 .

Step 4: Compute r/k = Qwk.

bep 5: Compute v k such that Ftv k= r7 .-

Step 6: Compute Xk - F

Step 7: Compute d A --k + X.

With the exception of Steps 3 and 5, Algorithm 3 computes d k by exe- ,

cuting a series of matrix-vector products followed by a vector sum. Each of the

matrix-vector products consists of N uncoupled block matrix-vector products.

thus exhibiting linear speedup when implemented in parallel. However, due to

the structure of F2 , Steps 3 and 5 require the solution of N stage forward and

reverse n X n block first-order linear recurrences, respectively. As in the case of

II

, ° .° ° ° °* "- ' '-'" ° "" • ." " °" ' " * °" . -. ". 5 .. ..... ° '' ' * * ' .. .'' ° ° " " % " % " ' %
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Algorithm 2, this again suggests the need for parallel procedures to solve linear

recurrences. Note that the state z k +1 and costate k +1 corresponding to u k I
can be obtained easily from the quantities w k and v k computed in Steps 3 and

5 of Algorithm 3, that is,

z k + l  z Zk  - Ok W k

and

adXk +1 Xk -ovk ]
IV. PARALLEL PROCEDURES FOR LINEAR BLOCK RECURRENCES

The model of SIMD parallel computation that we use consists of a global

parallel memory, p parallel processors, and a control unit, where all processors

perform the same operation at each time step (see Fig. 1). We further simplify

the model by making the following assumptions:

Al. Each computational operation takes the same amount of time, referred to

as a step.

A2. There are no accessing conflicts in global memory.

A3. All initial data resides in global memory. I
A4. There is no time required to access global memory.

We now present two parallel procedures to solve forward and reverse N

stage n X n block first-order linear recurrence systems that we use to implement

Algorithms 2 and 3. The procedures are blocked versions of the parallel scalar

approach given in [MEY86] and are formulated as a function of the number p of

processors so that their structure is fixed whenever the number of stages

2UN >
n*

PU

A ~ LA.~~. . A - - AA
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We first consider the parallel solution of forward recurrences. The for-

ward recurrence problem is: given n X n matrices Aj, i = 2, 3,..., N and given

vectors -7i e E s , i = 1,2,...,N, find the n vectors zi such that z r= , and zi

Aizi -1 +'7,, i =2,3,...,N. Let

N-1 if p > n
(p /n )2-l)

= N - 1 otherwise (8)

and

p/n ifp >n
1 otherwise. (9)

p.

For w in [0,1,...,-1 l , define the index sets

f 0(w)- {ici + w(pc2 -1) : i - l-2,...,1}

and

f 1(w) = {,i + Max (w+l,w(x 2-1)): i = KlI-1,...,1ll

Thus, given- = ( 2 Nt,. . k)t,"n E" and precomputed A [i +j,j] =

A,+jA,+j_,• Aj, j f f 0(W), i in [0,1,..., I-1J, the following procedure solves

the forward block recurrence system, where for presentation simplicity, we

assume that Ql and n are integers.

1. PROCEDURE FORWARD(N,n ,p ,-y)

2. z 1 "=y 1

3. FORw:=OTO0-1DO

4. FORALL j E f 0(w) DO IN PARALLEL zj :=-f

5. FOR i := I TO Max (1,tc-1) DO

6. FORALL j f 1(w) DO IN PARALLEL

r,
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7. zi := Ai+j z+i- + 4i+;

8. END FORALL

9. END FOR

10. FORALLj 0 (w) DO

11. FOR := 0 TO -1 DO IN PARALLEL

12. z;+:= A [i +j,j]zj . + z;+j;

13. END FOR

14. END FORALL

15. END FOR

16. END PROCEDURE

When 1 < p < n, the index set f 0(w) is empty and procedure FOR-

WARD reduces to sequentially executing step 7 N-1 times, each execution using

p processors. When n < p < nNl, procedure FORWARD sequentially solves

11 reduced block recurrence systems in zi of size (p /n )2, each in parallel. Each

reduced system is solved in two phases: the first phase consists of the execution of

steps 4 and 5 and computes (p /n )2 partial solutions, in which the first p /n are

the actual solutions and the second phase consists of the execution of loop 10 in

which the precomputed n X n block matrices A [i +1,J are used to update the

next p /n partial solutions at each iteration. We assign n processors to perform

each of the p /n concurrent executions of steps 7 and 12. The complete solution

to the block recurrence system is obtained after executing 12 iterations of loop 3.

If 11 is not an integer, then we replace Q by ro 1 and simply terminate the corn-

putation when ZN is computed and if K is not an integer, we replace P by

LP /n J.

We now modify the procedure FORWARD to solve N stage n X n block

reverse linear recurrence systems, where the reverse recurrence problem is: given

.."

.........._-'- _ ", _ .- . . '. - . , ." - ". .- ,, ". " . ". " - " - . " - , " - . " . . " / ." - '; ",- " ' S - " , ' " " N SL "V - " - " " " ,'' . ," . N ,, . " .A-, X,
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n Xn matrices A., i = N-1,N-2,...,1 and given vectors . c E", i =

N,N-1,...,1, find the n vectors X, such that XN = N and Xj = A i Xi+ 1 + j,

i = N-1,N-2,...,1. Let 0l and ic be defined by Eqs. (8) and (9). For w in

[0,1,...,Fl-1], define the index sets

rO(W) 6 {,i + W(Ic2-1)•i - -1,,-2,...1

and

r 1(w) = {,Ki + Max (w+1,w(,c2-1)) : i-,s,,-1,...,1}.

Given =(,, .....k )t, , c E" and precomputed A [j +1,j -i +1], =

A +,A A+, , j e ro(w), i in [0,1,...,P-ll, the following procedure

solves the reverse block recurrence system, where for presentation simplicity, we

again assume that fl and ic are integers.

1. PROCEDURE REVERSE(N ,n ,p , ) S.

2. XN := qN

3. FORw:=f0-1 TOODO

4. FORALL j c r 0(w) DO IN PARALLEL := ;

5. FOR i := 1 TO Max (1,iv-1) DO

6. FORALL j f r 1(w) DO IN PARALLEL
7. X-, := At-i+ + j- ;

8. END FORALL.

9. END FOR

10. FORALL j r 0(w) DO

11. FOR i 0 TO K-1 DO IN PARALLEL

12. Xj-j A=. [j +l'j -i +1]t Xj +1 + X'i-i ;

13. END FOR

14. END FORALL

7"



15. END FOR

16. END PROCEDURE

We now give the number of steps required to solve either an N stage for-

ward or reverse first-order n X n block linear recurrence system.

Theorem 1. Given N, n and p such that p =1 or -L is an integer, the number

n

of parallel steps required to solve a block n X n first-order linear recurrence sys-

tern of length N using p processors is

(N 1) 2  if 1 < p < n

p
T(N,n,p)=I

T] .,-

It is clear from Theorem 1 that the speedup SP = T, exhibited by the
T.4

procedures FORWARD and REVERSE is p when 1 < p _< n and -(p + n)
2

when n <p nN4 and Z and are integers. The corresponding U

S 1 n

efficiency Ep - S is therefore 1 when 1 < p < n and 1 + - when
p 2 2p

N-1 '
<p < nNA and Z are integers. In Figs. 2, 3, 4 and 5 we plot

E. for the values of n 8, 16, 32 and 64 respectively, where the efficiency

corresponding to the procedures FORWARD and REVERSE is denoted by the El
dashed line in each plot. Thus, we see that the efficiency increases with increas-
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f.

ing values of n and p and is independent of N.

V. PARALLEL BEST STEP STEEPEST DESCENT

We now use the parallel procedures for the solution of linear recurrences

discussed in the previous section to obtain parallel implementations of Algorithms

2 and 3 give the corresponding number of steps required for their execution when

p processors are used.

We first give the parallel implementation of Algorithm 2.

1. PROCEDURE GRADIENT(z 0 ,u 1)

2. F O R A L L i e {1,2,...,N } D O IN P A R A L L E L y i : B u ;3. - : -- "1 + A Iz ; 

"

4. z - FORWARD(N ,n ,p );

5. FORALL i c {1,2,...,N } DO IN PARALLEL fi : Q i zi 1;

6. X1 = REVERSE(N ,n ,p,);

7. FORALL i e {1,2,...,N } DO IN PARALLEL g i : Rj u i + B iX,';

8. RETURN g 1;

9. END PROCEDURE

Lemma 1: Given zo, u 1, N, n, m and p such that p = or-L is an integer,

n

the number of steps required by the procedure GRADIENT to compute g using

p processors, 1 < p < nN'k, is

Nn (d +2m-2)+ AM (2n+2m-1)- -2n2  ir I < p n t%

T(Nnmp)= I 
I

(2n+2m-2)+ (2n+2m-1)+ 18(p-n)+ 2n if n < p nN .

We next give the parallel implementation of Algorithm 3.

_ 21I
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1. PROCEDURE DIRECTION(g k )

2. FORALL i e {1,2,...,N } DO IN PARALLEL 1 $:= R, gIk;

3. FORALL i c {1,2,...,N } DO IN PARALLEL b3 k:_ Bi g'k;

4. wk = FORWARD(N,n ,p

5. FORALL i e {1,2,...,N } DO IN PARALLEL i k_ Q, wSA;

6. v k = REVERSE(N ,n ,p ,k);

7. FORALL i c {1,2,...,N I DO IN PARALLEL x := Biv k;

8. FORALL i c {1,2,...,N DOINPARALLEL d,:= p  + Xjk;

g. RETURN dk;

10. END PROCEDURE

Lemma 2: Given g , N, n, m and p such that p =1 or -- is an integer, the

n

number of steps required by procedure DIRECTION to compute d using p pro-

cessors, 1 < p < nN', is

Nn~nm) -(on +2m -2) + [L j(2n +2m -1) - in 1 <~ n

[Pn (2n +2m -2) + [.LMn (2n +2m -1) + N-1 19( -n f n < p !5 nN".

At this point it is interesting to contrast the result of Lemma 2 with the

number of steps necessary to obtain d k based upon the precomputation of the

matrix (R + F'F-t QF-'F,). Given p processors, 1 < p < Nm, the number

of steps required to obtain d k using Eq. (7) is

NmNT(N,m9P) (2Nm -1I).

Thus, for p in the range 1 < p < nN , the use of Algorithm 3 to compute d k

results in a smaller number of steps than using the precomputed matrix

%.

,%
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(R + FF F-QF- )F,) and performing a matrix-vector product.

We now embed the parallel procedures GRADIENT and DIRECTION

to obtain a parallel implementation of Algorithm 1 and we then give the

corresponding number of steps required for one iteration.

1. PROCEDURE PSDM(zo,u)

2. k =1;

3. g - GRADIENT(z 0 ,u 1);

4. WHILE Ig k 12 > c DO

5. dk = DIRECTION(g k);
6. a = <gk,gk >/<gk,d k >;

7. FORALL i f {1,2,...,N } DO IN PARALLEL gk +1 gik - a k dlk;

8. FORALL i c {1,2,...,N } DO IN PARALLEL u'k +1 uik - ak g9i;

9. k = k +1;

10. END WHILE P

11. END PROCEDURE

Theorem 2: Given z 0 , N, n, m and p such that p =1 or -L is an integer,

n%

the number of steps required by one iteration of procedure PSDM using p proces-

sors, 1 < p < nN4 , is

( +2m -2) + 2 +2m +7) - ±- + 21op2p if i -P nT- (N n m pN -N 1
T ](2n +2m -2) + I(2n +2m+7) + 8(p -n - 21og g if n < p < nNt.

The speedup SP and efficiency EP for procedure PSDM can be obtained

directly from Theorem 2 as

T 1SP-r
TP!



p pT,'

where

T,= Nn (6n + 2m - 2) + Nm (2n + 2m + 7) -4n,

T =N -(2n + 2m - 2)+ -(2n + 2m + 7) + 8(N -1)n 2 + 210 2 P,
p p p+ n

and for simplicity, the ceilings have been removed. For the range of values of N,

n and m of interest

T Nn (6n + 2m - 2) + Nm (2n + 2m + 7),

Nn Nm8Nn 2

TP -(2n + 2m - 2) + -(2n + 2m + 7) +
p p p +n'

and thus

SP p(C + 4n 2)

C+

Ep C +4n 2

C48n
2 p

p +n

where
.V

C =2(n + M )2 - 2n + 7m.

Using the fact that

P <1

we may find lower bounds for the speedup and efficiency of procedure PSDIM,

that is

IIf
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pD
sP > 2 9

- D +4n 2

oD

D +4n2'
where

D = 2(n + m)- 2n + 7m + 4n 2 .

Note that

D _ 6n 2 +E

D + 4n 2  10n2 + E'

where

E =2m 2 +4nm -2n + i7m,

thus E > 0, and therefore

SP > 0.6p,

Ep >0.6.

In Figs. 2, 3, 4 and 5, we plot E. for the procedure PSDM for the

values n = 8, 16, 32 and 64 respectively, and in each case use the values m -

1, 4 and 8. It is then easy to see that E, increases with m, and that the

efficiency of the procedure PSDM is bounded from below by the efficiency of the

procedures FORWARD and REVERSE.

VI. CONCLUSIONS

In this paper a parallel implementation of the best-step steepest descent

method has been presented to solve the LQR optimal control problem. The pro-

cedure exhibits the desirable property that its structure, and hence parallelism, is

determined by the number of available processors. Thus, unlike approaches in
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which the structure of the procedure changes with problem size, the procedure

presented in this paper maintains the same computational and interprocessor

communication requirements, independently of the number of stages in the con-

trol problem. Furthermore, the procedure has been shown to exhibit an efficiency

Ep always greater than 0.6.

The paper's basic approach can be used to produce parallel implementa-

tions of more complex gradient based methods. For example, the procedure

PSDM may be easily modified to produce the following parallel version of the

Fletcher-Reeves conjugate gradient method.

1. PROCEDURE PCGM(z 0,u 1)

2. k =1;

3. 7r g - 1 GRADIENT(z 0,u 1);

4. WHILE gk] 2> DO

5. d k DIRECTION(7r');

6. a -- <gk,7r k >I<d k,7rk >;

7. FORALL i {1,2,...,N } DO IN PARALLEL gik +: gik - ak d;k;

8. FORALL i {1,2,...,N } DO IN PARALLEL u-k + k - k kri;

9. )3k . <gk+l,gk+l>I<gk,gk >;
10. FORALL i e {1,2,...,N } DO IN PARALLEL 7rAk +: gik +1 - ok 7riA;

11. k = k + 1;

12. END WHILE

13. END PROCEDURE

The procedure PCGM exhibits slightly less speedup than the procedure

PSDM due to the additional evaluation of the term k . However, this is offset

by gaining the improved convergence properties of a conjugate gradient method.

.
Ile"
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Finally, we note that the procedures presented in this paper may be

used to solve discrete optimal control problems which involve nonquadratic cost,

nonlinear dynamics and constraints on the states and/or controls. In that case,

one needs to use penalty function and gradient projection methods and suitable ,
'% •

approximations to cost function and system dynamics.

REFERENCES

[CAR84] Carlson, D.A., and Sugla, B., Time and Processor Efficient Parallel

Algorithms for Recurrence Equations and Related Problems, Proceed-

ings of the 1984 International Conference on Parallel Processing,

August 21-24, 1984, pp. 310-314.

[CHE75] Chen, S.C. and Kuck, D.J., Time and Parallel Processor Bounds for

Linear Recurrence Systems, IEEE Trans. Computers., Vol. C-24, V %

No.7, July 1975, pp. 701-717.
"'." -%.

[CHE78] Chen, S.C., Kuck, D.J. and Sameh, A.H., Practical Parallel Band Tri-

angular System Solvers, ACM Trans. on Mathematical Software, Vol.

4, No. 3, September 1978, pp. 270-277.

[GAJ81] Gajski, D. J., An Algorithm for Solving Linear Recurrence Systems on

Parallel and Pipelined Machines, IEEE Trans. Computers., Vol. C-30,

No. 3, March 1981, pp. 190-206.

[GRA81] Graham, A., Kronecker Products and Matrix Calculus • with Appltca-

tions, Ellis Horwood Limited, West Sussex, England, 1981.

[KOG73] Kogge, P.M., and Stone, H.S., A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations, IEEE Trans.

Computers., Vol. C-22, No. 8, August 1973, pp. 786-793.

.--

*: '. , * " .**,...* , ... , * * . S. J ' * .~ % . .. ' .. ' ,", % . ". . % ° '. '-' °% ".+ . . , o,



- 23- 4

(KUC761 Kuck, D. J., Parallel Processing of Ordinary Programs, Advances in

Computers., Vol. 15, Academic Press, New York, 1976, pp. 119-179. %

[LAR73] Larson, R.E. and Edison, T., Parallel Processing Algorithms for the

Optimal Control of Nonlinear Dynamic Systems, IEEE Trans. Corn-

puters., Vol. C-22, No. 8, August 1973, pp. 777-786.

[LEW86] Lewis, F. L., Optimal Control, John Wiley and Sons, New York, N.Y.,

1986.
..

[LUE84] Luenberger, D. G., Linear and Nonlinear Programming, Second Edi-

tion, Addison-Wesley Publishing Company, Reading, Massachusetts,

1984.

[MEY73] Meyer, G.G.L., A Segmented Algorithm for Solving a Class of State

Constrained Discrete Optimal Control Problems, Decision and Control

Theory Conference, San Diego, California, 1973, pp. 73-79.

[MEY85] 22yer, G.G.L., and Podrazik, L.J., A Matrix Factorization Approach

to the Parallel Solution of First-Order Linear Recurrences, Proceed-

ings of the 28-rd Annual Allerton Conference on Communication, e
P
0.1~

Control and Computing, October 2-4, 1985, pp. 243-250. 01

[MEY86] Meyer, G.G.L., and Podrazik, L.J., A Parallel First-Order Linear

Recurrence Solver, Proceedings of the 20-th Annual Conference Infor-

mation Sciences & Systems, Princeton, New Jersey. March 19-21,

1986.

[POL71] Polak, E., Computational Methods in Optimization. A Unified

Approach, Academic Press, New York and London, 1971.

[SAM77I Sameh, A.H., and Brent, R.P., Solving Triangular Systems on a Paral-

lel Computer, SIAM J. Numer. Anal., Vol. 14, No. 6. December 1977.

.0"

llP' 'd
•'/

. % %'" v"". "t"".."."",'o.'-.. I, % " " ' .€ ,'% " €'g', %. d. '•"' " %" " * " € ""''" "' "" " " " ' "' """ " " ° " ""'



- 24 -

pp. 1101-1113.

[SCH81] Scheel, C. and Mclnnis, B., Parallel Processing of Optimal Control

Problems by Dynamic Programming. Information ;rienres, %*(-). 25,

No. 2, November 1981. pp. 8.5-114.

[TRA8OI Travassos, R. and Kaufman. H.. Parallel1 Ail,,rithrii . for ,olvinig Non-

linear Two-Point Boundary-Vaiue P'r' Llerin Whiwh riein Optimal

Control, Journal of Optimization Thtr,r (.:id Appliration-s %V 1 30,

No. 1, January 1980. pp. -fl7.

V %



-25-

Parallel Nlcrnoir

.%1, '12l 3  .. .Afp

Interconnection Network

Parallel Processor

Figure 1. The Abstract Parallel Computational Model2
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